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This paper deals with the hydroprocessing of Fish Oil (FO) as a source to produce biofuel. The 

hydrotreating experiments were performed at 380°C and 50bar pressure over the CoMo/Al2O3 and 

CoMoRe/Al2O3 catalysts. Through hydrogenation of double bonds and carboxyl groups of Fatty 

Acids (FAs), accompanied by secondary hydrocracking and isomerization reactions, there results a 

mixture of normal & isoparaffin with 13-22 carbon atoms per molecule with physicochemical 

characteristics similar to diesel fuel. The hydrotreatment of Straight Run Gas Oil (SRGO) mixed 

with 5% and 10% (FO) was also studied. The research focuses on the influence of the SRGO-FO 

ratio and of the catalyst type on the yields and the physiochemical properties of the obtained biofuel. 

The results show that the hydrotreatment of FO and of SRGO-FO mixtures is an alternative for 

biofuel production with characteristics similar to diesel fuel. 
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The largest part of world energy consumption is ensured by fossil fuels: coal, oil and natural gas which are non-

renewable resources with a high rating of depletion in the following 50 to 100 years [1-3]. The increasing consumption 

of fossil fuels has a negative impact not only on remaining hydrocarbon reserves, but also on environmental pollution 

by high grade NOx, CO2 and SOx emissions which result from fossil fuel combustion [4-7]. 

Fossil fuels replacement with Renewable Energy Sources (RES) has mainly gained in importance in recent years 

[1,8-10]. All the EU countries have decided to increase the biofuel content in commercial fuels for cars from 2% in 2005 

to 5.75% in 2010 and 10% in 2020 without affecting food needs for the population [11,12]. In 2020 Romania advances 

its targets to 24% RES on gross energy consumption; respectively 10% as biofuels for transportation and from 2030 the 

target is 27% RES on total energy consumption, an increase of 27% in energy efficiency and a reduction of GHG 

emissions by 40% as compared to 1990 [13]. 

Vegetable oils, animal fats, waste cooking oil and waste of animal origin are the most important RES used to produce 

biofuels for diesel engines. 

Due to high viscosity, lower oxidation stability, lower volatility and particle emissions, vegetable oils cannot be used 

directly as diesel fuels [14,15]. 

Numerous technologies based on physical phenomena (dilution and emulsification) or chemical transformations 

(transesterification, hydrotreating, hydrocracking, catalytic cracking and pyrolysis) can be used to produce biodiesel. 

The classic biodiesel, named Fatty Acid Methyl Esther (FAME), is produced from triglycerides of raw vegetable 

oils, animal tallow and waste oil by conventional transesterification technologies, with basic, acidic, enzymatic or 

heterogeneous catalysts [16-22]. 

Biodiesel has: an adequate cetane number, biodegradability, lower toxicity, carbon neutral and eco-friendly fuel 

which produces: less sulphur, HC, PM, and CO emissions [23]. As compared with fossil diesel, biodiesel FAME type 

has: lower energy content, higher viscosity, augmented NOX emissions, higher pour point and cloud point [24]. 

Together with FAME the transesterification reaction produces glycerol at a volumetric ratio of 10/1. Glycerol still 

remains a barrier in biodiesel production. Analysing an impressive number of scientific articles, databases and patents, 

Monteiro [25] identifies 4 major directions for glycerine capitalization: 

-Manufacture of chemical product; 

-Production of polymers; 

-Production as biofuels and biogas; 

-Purification and use as glycerol. 

Despite FAME higher production costs compared with fossil fuels, it is estimated that biodiesel production will grow 

to 41 million m3 in 2022 [25]. This growth will be encouraged through government policies, constraints on 

environmental legislation and fiscal policies.  
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Moreover, the efficient valorisations of glycerol can maintain the biodiesel type FAME in biofuels competition. At 

the same time, hydroconversion of triglycerides from vegetable oils and animal fats can be an alternative way to produce 

biodiesel named Renewable Diesel (RD) [26-32].  

In comparison with FAME production by transesterification the hydroconversion process to produce RD has the 

following advantages: 

 Compatibility of the RD with existing engines; 

 Feedstock flexibility regarding the content of free FAs; 

 Free of by-product (glycerol). 

Also, the RD biofuel has superior characteristics such as: higher cetane number, higher oxidation stability, higher 

energy, 0% oxygen content than FAME, negligible sulphur and aromatics [33]. 

The main limitation in biofuel fabrication is the direct competition with the usage of biomass for food production. 

A solution to this problem is to use the waste of: cooking oil, animal fats and industrial used oils as raw materials for 

the production of biofuel, reducing significantly the overall price [34-36], as well as the environmental pollution effects 

caused by storage. A significant resource of non-food oil can be the oil obtained from fish waste. For centuries, fish and 

secondary products out of fish, have been consumed as food for humans and animals. 

Humans consume just a small amount of the total annual caught fish, while the rest is used as animal food or in 

industry in order to fabricate: fodder, soap, glycerine or other non-food products. Fish processing results in considerable 

waste quantities which is a major problem for the storage and for environmental protection. 

A beneficial solution is processing the fish waste into different FO sorts: a) black-brown colour raw oil, very viscous 

with powerful odour or b) transparent refined oil resulting from the extraction of omega FAs, with a low viscosity and 

less odour. The most common FO obtaining method is the wet reduction in three steps: cooking at high temperature (85-

95oC), pressing and centrifuging. Other alternative methods are: hydraulic pressing, vacuum distillation, urea 

crystallization, hexane solvent extraction and conventional crystallization [37]. The oil obtained as a sub-product from 

fish processing, can be used as raw material for production of diesel type biofuel. 

The objective of the present paper is to utilize the FO obtained as a by-product resulting from fish wastes processing 

for the production of diesel type biofuels through hydrotreatment. The FO and FO mixed with SRGO have been 

subjected to hydro-treatment reactions. The experiments aimed to establish the influence of the hydrotreatment process 

parameters over the characteristics of the obtained bio-diesel. Two types of catalysts have been used for the 

hydroprocess: CoMo/Al2O3 and CoMoRe/Al2O3. 

 

Experimental part 

Materials 

For the experimental study, a FO (Nutrivet wild salmon) and SRGO were used. Table 1 presents the main 

characteristics of FO and SRGO and Table 2 shows the composition of FAs of FO. 

 
Table 1 

CHARACTERISTICS OF FO AND SRGO 

Characteristics Density at 

20°C 

Viscosity at 

40°C 

Pour Point Flash point 

Units g/cm3 mm2/s °C °C 

SRGO 0.845 4.41 -12 64.1 

FO 0.896 12.60 4 164.0 

 

Table 2 

THE CHEMICAL COMPOSITION OF FO 

Peak RT Scientific name of acid (%) wt 

1 12.566 myristic 1.88 

2 15.890 palmitoleic 2.58 

3 16.317 palmitic 8.71 

4 19.742 linoleic 14.90 

5 19.966 oleic 48.33 

6 20.345 stearic 2.96 

7 23.121 cis 5,8,11,14,17 eicosapentaenoic 2.86 

8 23.493 8,11,14,17, eicosatetraenoic 1.07 

9 23.764 cis 11,14,eicosadienoic 1.80 

10 23.900 cis 11 eicosenoic 5.85 

11 26.798 4,7,10,13,16,19 docosahexaenoic 4.45 

12 27.068 7,10,13,16,19 docosaeptaenoic 1.58 

13 27.746 13 docosenoic (erucic) 3.03 
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In order to determine the composition of FAs, the FO was esterified with methanol and then was subjected to gas 

chromatography / mass spectrometry analysis on a CP-3800 Triple Quad Agilent Technologies GC-MS system a NIST 

library was used to identify and analyse the reaction mixtures and the used parameters are presented in Table 3. 

The result of the GC / MS analysis of FO is shown in Figure 1. 

 

 
Fig.1.Chemical composition of FO 

 
Table 3 

THE PARAMETERS FOR GS/MS ANALYSIS 

GS Method MS Method 

Column DB-WAX (L=30m, D=250 μm, d=0.25 μm) Collision cell QQQ: Flow Quench Gas (He) = 2.2 

ml/min; collision gas flow (N2 ) = 1.5 ml/min; 

Oven program: 50°C for 1min., then 7°C /min. until 180°C Source type: EI; 

Carrier gas: He, debit 1ml/min Electrons energy: 70eV; 

Injector temperature: 250°C Source temperature: 230°C;  

Temperature Aux 2: 280°C 

 

Two catalysts were used, CoMo/Al2O3 type and CoMoRe/Al2O3 type obtained by successive impregnations with 

aqueous solutions of the catalytic precursors, applying the method of filling the support pores. Catalyst precursors were 

cobalt nitrate Co(NO3)2, ammonium heptamolybdate tetrahydrate (NH4)6Mo7O244H2O and perrhenic acid (H4O9Re2), 

respectively. The precursor concentrations from impregnation solutions were calculated according to the proposed metal 

content (4%Co, 8%Mo), respectively (4% Co, 8% Mo, 0.5% Re) as well as the catalyst support pore volume.  

Catalysts reconditioning between impregnations has been carried out by oven drying at 160°C for 4 hours and the 

final conditioning has been completed in the following sequence: 1) Oven drying at 160°C for 8 hours; 2) Calcination 

at 450°C for 6 hours, followed by activation in a hydrogen stream at 450°C for 6 hours. The chemical composition of 

the catalysts used in the experiment was confirmed by atomic absorption. Catalysts textural data (specific surface, pore 

volume, mean pore diameter, pore size distribution) were determined on an Autosorb1 Quantacrome (Table 4). The 

texture data were obtained by automatic recording and processing of the adsorption-desorption nitrogen isotherms. The 

specific surface was calculated using the BET equation in the linear part of the adsorption isotherm. To evaluate the 

pore distribution and the pore size, desorption branch of the isothermal with hysteresis was used applying the BJH 

method. 

The adsorption isotherms for the prepared catalysts (Fig. 2) are V type with a H3 loop hysteresis characteristic of 

mesoporous materials, with low affinity for the adsorbed molecules and a tight distribution of the pore size. The specific 

surface of the two catalysts has a typical value for γ-alumina catalysts. Thus, the specific surface is relatively large, the 

volume of the pores is large and the distribution of the mesoporous sizes indicates a good accessibility of the active 

centres, compatible with the FO triglycerides diameter. 

 
Table 4 

PHYSICAL PROPERTIES OF CATALYSTS 

Property CoMo/Al2/O3 CoMoRe/Al2O3 

Surface area (m2/g) 274.145 257.162 

Pore volume (cm3/g) 0.486 0.466 

Average pore size (nm) 6.300 6.400 

 

BJH pore size distribution reveals that the two catalysts contain a trimodal pore size distribution at an average pore 

distribution of 5.2 nm, 6.3 nm respectively 7.5 nm. 
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Fig. 2.N2 adsorption isotherms of catalysts 

 

The catalysts were activated by sulfurization with dimethyl-disulphide (DMDS) solubilized in SRGO, to 4%wt 

concentration, in the presence of hydrogen at a flow rate of 15l/h, 280°C and 15bar. Activation is completed after the 

H2S formation in the reaction gases is revealed at the appearance of the yellow colour of cadmium acetate 5% aqueous 

solution, used as indicator. 

 

Micro-pilot plant 

The hydrotreating experiments were performed on a micro-pilot plant (Fig. 3) by using a fixed bed reactor with a 

volume of 40 cm3.  

The hydrotreating experiments have been carried out for, FO and a mixture of FO with 5 and 10% SRGO at 380°C 

and 50bar with hourly space velocity 1.5h-1 and 1000 cm3/cm3.H2/feedstock ratio. 

The experiments ran for 3 hours. The liquid phase is dried with CaCl2 in order to remove the traces of water, as a 

result of FO FAs deoxygenation reactions and then it is weighed to establish the yield in hydrotreated product. 

The chemical composition of the liquid product obtained from FO hydrotreating, was determined by GS/MS on a 

GC-MS CP-3800 Triple Quad Agilent Technologies. Biofuel resulting from hydrotreatment was characterized to 

determine: density (EN ISO 12185), pour point (SR 13552), flash point (SR 5489) and viscosity (SR EN ISO 3104) 

 

 
Fig. 3.The Hydrotreating Micro-pilot Plant 

(1-reactor, 2-electrical furnace, 3-water cooler, 4- liquid-gas separator, 5-metering pump, 6- feedstock burette 7-relay,  

8- temperature register, 9-autrotransformer, 10-temperature controller, 11-hydrogen tank, 12- flow meter) 

Results and discussions 

As shown in Table 2 the FO used in the hydrotreatment process contains 13.55%wt of saturated FAs, 59.79%wt 

monounsaturated and 26.66%wt polyunsaturated FAs. The saturated FAs contain mainly palmitic acid and the 

unsaturated ones, oleic acid. Distribution by number of carbon atoms highlights the very high content of FAs with 18 

carbon atoms (66.19%), followed by 20 atoms (11.58%) and 16 atoms (8.71%). The material balance for each experience 

is presented in Table 5. 
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The yields in the products were determined by the mass balance for each experiment, as a result of knowing the 

amount of raw material and of weighing the organic product resulting from hydrotreatment, after water absorption on 

CaCl2. The gases were established by difference. 

 
Table 5 

PRODUCTS YIELDS OBTAINED BY HYDROCONVERSION OF FO AND OF 

FO WITH SRGO MIXTURES 

Catalyst CoMo/Al2O3 CoMoRe/Al2O3 

FO content in mixture 

FO-SRGO (%) 5 10 100 5 10 100 

Hydrotreated Product 95.47 94.65 84.94 96.38 94.12 84.09 

Gas 4.05 4.44 6.14 3.08 4.76 5.85 

Water 0.48 0.91 8.92 0.54 1.12 10.06 

 

Hydroconversion of FO alone determined lower hydrotreated product yields, due to water and gas (propane, CO, 

CO2) formation. This is due to hydrocracking of triglycerides and hydrodeoxygenation, hydrodecarbonylation and 

hydrodecarboxylation reactions of FAs. Hydrodeoxygenation reactions favoured by the more acidic CoMoRe catalyst 

generate more water. In the hydroconversion of SRGO mixtures with 5% and 10% of FO respectively, the yields in the 

hydrotreated liquid product are higher, than in the case of hydrogenation of FO alone. SRGO does not contain oxygen 

compounds and gases originate only as a result of the hydrogenation of the compounds with sulphur and nitrogen and 

of the hydrocracking reactions. 

Decreasing yields are accentuated by an increase in the proportion of FO added ratio to the SRGO, as a result of FA 

content increase, which generates more water and gases through hydroconversion reactions. 

The chemical composition of the bio-oil resulting from the hydrotreating of FO on CoMo/Al2O3 and CoMoRe/Al2O3 

catalysts was determined by the GC-MS method and is shown in Tables 6, 7 and Figures 4, 5. 
 

 

 

 

 
 

Fig.4.Chemical composition of hydrotreated biofuel on CoMo/Al2O3 catalyst 

 

 

Peak Components RT Wt% 

1 Tridecane 6.518 1.26 

2 Tetradecane 8.152 3.68 

3 Pentadecane 9.808 2.14 

4 Hexadecane 11.285 4.15 

5 Heptadecane 11.553 10.37 

6 7 MethylHexadecane 12.923 2.72 

7 Eicosane 13.134 7.78 

8 Octadecane 14.716 42.38 

9 Nonadecane 16.055 2.56 

10 Heneicosane 17.536 8.41 

11 1 Octadecanol 18.951 1.12 

12 6 Octadecenoic acid 19.582 3.88 

13 Octadecanoic acid 19.819 1.92 

14 n Docosane 20.141 4.45 

15 Tetracosane 22.503 0.91 

 Sum  100.00 

 
Table 6 

THE CHEMICAL COMPOSITION OF THE 

PRODUCT RESULTING 

FROM THE HYDROTREATING OF FO ON 

CoMo/Al2O3 
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Table 7 

CHEMICAL COMPOSITION OF PRODUCT RESULTING  

FROM HYDROTREATING  OF FO ON A CoMoRe/Al2O3 

Peak Components RT Wt% 

1 Tridecane 6.648 0.75 

2 Tetradecane 7.874 1.72 

3 Pentadecane 9.160 3.73 

4 Hexadecane 10.595 8.62 

5 7 MethylHexadecane 11.245 2.26 

6 4 MethylPentadecane 11.347 0.55 

7 4 methylHexadecane 11.449 0.52 

8 8 HexilHentadecane 11.550 0.50 

9 3 MethylHexadecane 11.679 0.43 

10 Heptadecane 12.214 16.19 

11 8 MethylHeptadecane 12.891 4.61 

12 7 HexilTridecane 12.952 1.39 

13 8 HexylPentadecane 13.020 1.32 

14 3 Methyl Heptadecane 13.135 1.43 

15 2 Methyl Heptadecane 13.250 1.16 

16 4 MetilHeptadecane 13.392 1.39 

17 Octadecane 14.022 36.82 

18 1 Octadecanol 15.166 1.17 

19 2 DodecylCiclohexane 15.274 1.39 

20 n Dodecyl Benzene 15.626 0.97 

21 Eicosane 15.802 3.42 

22 Heneicosane 17.786 6.35 

23 Docosane 21.829 3.31 

 Sum  100.00 

 

 
Fig. 5. Chemical composition of hydrotreated biofuel on CoMoRe/Al2O3 catalyst 

 

The data presented in Tables 6, and 7 demonstrate that the hydrotreating of FO results mainly in obtaining paraffin 

with the same number of carbon atoms as FAs as a consequence of triglycerides transformation from oil, by 

hydrodeoxygenation reactions and paraffin with a less carbon atom as a result of hydrodecarboxylation or 

hydrodecarbonilation reactions. In all three mentioned reactions: propane, CO2, CO and water are generated Figure 6 
shows a general scheme of reactions occurring in the FO hydroconversion process. 

The triglyceride double bonds are hydrogenated and then by hydrocracking, triglycerides break down with propane 

and free FAs formation, which after that, through a series of reactions indicated in the scheme, they convert to normal 

and isoparaffin with 13-22 carbon atoms, which can constitute components for fuel formulation. FAs with 18 carbon 

atoms (66.19%) are transformed by hydrodeoxygenation into: 42.38% octadecane on the CoMo and 43.91% octadecane 

on CoMoRe (Fig. 7). 

Taking into consideration the low content in acids with 17-carbon atoms (2.58%), most of the C17 paraffin come 

from the hydrodecarbonylation and hydrodecarboxylation reactions of acids with 18 carbon atoms. Also, by 

hydrocracking and isomerization reactions, facilitated by the acidity of the catalyst, paraffin with fewer carbon atoms 

and isoparaffin respectively, are produced. In addition to the support acidity (Al2O3), Rhenium added to the catalyst as 

perrhenic acid (H4O9Re2), increases its acidity (generating Lewis acid centres). Higher acidity justifies formation by 
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isomerization reactions of branched paraffin in a proportion of 15.36% on the CoMoRe catalyst compared to only 2.72% 

on the CoMo type. 

The presence of alkyl cyclohexane (2-dodecylcyclohexane) and alkyl benzenes (n-dodecylbenzenes) is explained by 

cyclization and dehydrogenation reactions of olefin-like intermediate products, which occur in the cracking reactions 

on the acidic centres of the catalyst. 

The lower hydrogenation activity of the CoMo/Al2O3 catalyst compared to the CoMoRe type, justifies the presence 

of FAs and fatty alcohols (octadecanoic acid, 6-octadecenoic acid and octadecanol) in the hydrotreated product. 

 

 
 

Fig. 6. Hydroconversion of FO into Biofuel Scheme 

 

 

 
 

Fig. 7. Hydrodeoxygenation of C18 FA Scheme 

 

The hydrotreatment experiments aimed to convert the FO into a bio component for diesel fuel and to directly obtain 

bio fuel by hydrotreating of FO-SRGO mixtures. The main physicochemical characteristics of liquid product, resulting 

from hydrotreatment are shown in Table 8. 

 
Table 8 

PHYSICOCHEMICAL PROPERTIES OF THE HYDROTREATED PRODUCT 

Catalyst CoMo/Al2O3 CoMoRe/Al2O3 

FO content in mixture 

FO-SRGO 5 10 100 5 10 100 

Properties 

Density (g/cm3) at 15°C 0.8423 0.8396 0.8037 0.8407 0.8381 0.7928 

Viscosity (mm2/s) at 40°C 3.92 3.78 3.59 3.86 3.74 3.21 

Flash Point, (°C) 77 71 58 79 73 54 

Pour Point, (°C) -10 -7 4 -14 -13 -8 

 

The physicochemical characteristics of the hydrotreated product are influenced by the FO content in mixture FO-

SRGO as well as by the catalyst used. 

Table 8 data reveal a significant decrease in the hydrotreated FO density (0.7928 or 0.8037g/cm3 respectively) vs the 

density of the crude FO (0.896g/cm3) as a result of the hydrogenation reactions which eliminate the groups containing 

oxygen from the oil structure [31]. The products resulting from the hydroconversion of FO and FO-SRGO blends have 
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densities ranging from 0.8381 to 0.8423g/cm3, within the limits imposed by the EN590 standard for diesel fuel (density 

0.820-0.845g/cm3). The conversion of FO into a mixture of mostly paraffinic hydrocarbons, with a lower density in 

relation to the other hydrocarbon classes, with the same number of carbon atoms as hydrotreated gas oil, explains the 

decreasing of the hydrotreated product density, along with the increasing of the added ratio. Due to the higher acidity, 

which intensifies the hydrocracking reactions, by hydroconversion on the CoMoRe catalyst, there results biofuels of a 

lower density as compared to CoMo catalyst case. 

Rhenium doped catalyst allows a slight improvement of the properties due to the n-paraffin hydroisomerization 

reactions. Thus, the pour point decreases from 4°C for mixtures with 5%FO to 6°C for mixtures with 10% FO and to 

12°C for the hydrotreated FO (Table 3.7). The decrease is justified mainly due to the increasing in isoparaffin content, 

from 2.72% on the CoMo/Al2O3 catalyst, to 15.36% on the most acidic CoMoRe/Al2O3 catalyst, as a result of paraffin 

hydroisomerization reactions. Since the value of the cold flow properties are below EN 590 requirements, the following 

steps are suggested the hydroisomerisation of hydrotreated products on catalysts with higher acidity [28] and the adding 

of pour point depressants additives. 

The transformation of triglycerides from FO, into paraffinic hydrocarbons with 13-22 carbon atoms in the molecule 

(Table 6,7), results in a significant decrease of product kinematic viscosity, obtained by hydroconversion from 

12.6mm2/s for pure FO to respectively 3.21mm2/s and 3.59mm2/s for the hydrotreated oils on the two catalysts. 

Biofuel viscosity obtained from the hydrotreatment of FO-SRGO blends, decreases as compare to the viscosity of 

the two feedstocks up to values below 4.5mm2/s. Viscosity decrease is bigger for the more acidic CoMoRe catalyst. 

The elimination of carboxyl bonds by hydrogenation of FAs, causes a significant decrease in the flash point, from 

164°C for pure FO at 54-58°C for hydrotreated FOs. 

 

Conclusions 

Oil recovery from by-products obtained in the fish industry is a cost effective strategy for fuel production and it is 

also an efficient solution to the pollution problems generated by their storage. 

Hydrotreatment of FOs is a technologically accessible and a cost-effective process for the production of diesel 

biofuels. 

Hydrogenation of double bonds and carboxyl groups of FAs, accompanied by secondary hydrocracking and 

isomerization reactions, results in the formation of a predominantly paraffinic hydrocarbon mixtures with 13-22 carbons 

in the molecule with physicochemical characteristics in conformity with to the requirements of quality standard for 

diesel fuel EN590. 

Hydrotreated product composition is strongly influenced by the catalyst acidity. The isoparaffins content is 15.36% 

on the more acidic CoMoRe/Al2O3 type catalyst compared to 2.72% on the CoMo/Al2O3 type. 

Hydrotreatment of FO-SRGO mixtures with different FO content in mixture FO-SRGO is an efficient method to 

produce biofuels. 
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